1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Получение моноклональных антител

Моноклональные антитела: применение для лечения

Сегодня они стали необходимым реагентом в биологических лабораториях. Продажи препаратов, в которых встречаются моноклональные антитела, направленные на терапию тяжелейших заболеваний (псориаз, рак, артрит, склероз), имеют многомиллиардный оборот. Хотя в 1975 году, когда была опубликована статья про метод получения гибридом, лишь единицы поверили в их практическое применение.

Что такое моноклональные антитела

Они вырабатываются иммунными клетками, происходящими от одной предшественницы, принадлежащими к одному клону. Это явление наблюдается при выращивании В-лимфоцитов в культуре. Такие антитела могут вырабатываться против почти любого природного антигена (к примеру, бороться с чужеродным белком и полисахаридами), который они будут специфически связывать. Далее они используются для обнаружения этого вещества или его очистки. Моноклоны широко применяются в биохимии, молекулярной биологии, медицине. Производить антитела нелегко, что напрямую влияет на их стоимость.

Получение моноклональных антител

Этот процесс начинается с иммунизации животных, как правило, мышей. Для этого вводят специфический антиген, который синтезирует антитела против него. Затем у мыши удаляется селезенка и гомогенизируется для получения суспензии клеток. Она содержит B-клетки, продуцирующее антитело. Затем их смешивают с миеломой (мышиной плазмоцитомы), которая имеет непрерывную способность синтезировать себе подобных в культуре (опухолевые клоны).

Благодаря слиянию образуются гибриды опухолевых и нормальных клеток (гибридомы), непрерывно растущие и способные производить смесь антител заданной специфичности. Следующий шаг после получения гибридом — клонирование и отбор. В каждую лунку специального планшета помещают около 10 слитых клеток и культивируют их, проверяя на выработку специфических иммуноглобулинов. Гибридомы из лунок, содержащих нужные идентичные антитела (парапротеины), клонируют и вновь проверяют. Так делают 1-2 раза.

В результате получают клетки, способные производить собственные иммуноглобулины только одной нужной уникальной специфичности. Далее клоны можно заморозить и сохранять. Или же культивировать, накапливать, привить мышам, где они также будут расти. Впоследствии полученные молекулы иммуноглобулина разными методами очищаются от посторонних примесей и используются для диагностики в лабораториях или терапевтического применения.

Важно отметить, что полученный с помощью гибридомы клеточный клон является мышиным иммуноглобулином, который при попадании в организм человека вызовет реакцию отторжения. Выход нашли благодаря рекомбинантным технологиям. Взяв фрагмент мышиного моноклона, соединили его с фрагментом человеческого иммуноглобулина. В результате были получены гибридомы, получившие название химерных, которые были уже более близкими для человека, но все равно провоцировали иммунные реакции организма, отличающиеся от требуемых.

Следующий шаг был сделан благодаря генной инженерии и связан с созданием, так называемых гуманизированных антител, на 90% гомологичных человеческому иммуноглобулину. От первоначального гибридомного мышиного моноклона осталась лишь маленькая часть от слияния клеток, которые отвечают за специфическое связывание. Они и используются в клинических испытаниях.

Применение

Моноклоны успешно вытесняют иммунные сыворотки. Гибридомы создали удивительные возможности в аналитике: их применяют как «микроскоп» с необычайно высоким разрешением. С их помощью можно обнаружить уникальные антигены, характерные для раковых клеток конкретных тканей, получить к ним моноклоны определенной специфичности и использовать для диагностики и типирования новообразований. Применяют их еще при лечении псориаза, рассеянного склероза, артритов, болезни Крона, раке молочной железы и многих других.

При псориазе

Для терапии псориаза тяжелых форм назначают прием системных глюкокортикостероидов (стероидные гормоны), влияющих на гормональный фон человека и подавляющих местный иммунитет. Моноклональные антитела при псориазе воздействуют исключительно на активные клетки псориатического воспаления, не подавляя иммунную систему полностью. Терапевтический эффект – снижение активности воспаления, нормализация деления клеток кожи и исчезновение псориазных бляшек.

При ревматоидном артрите

Моноклональные антитела при ревматоидном артрите оказались эффективны в тех ситуациях, где другие средства не оказали лечебного действия. В европейских странах сегодня основным терапевтическим направлением при этом недуге являются такие препараты. Терапевтический курс длительный по времени, ведь лекарства действуют хоть и эффективно, но медленно. Из-за сложностей в диагностике артритов за лечебной помощью стоит обращаться как можно раньше, при первых же симптомах и подозрениях.

Для лечения рака

Для большого числа пациентов с онкологией фармпрепараты, в составе которых содержатся моноклоны, стали надеждой на выздоровление и возврат к нормальной жизни. Многие люди с крупными злокачественными опухолями тела, множеством опухолевых клеток и малоутешительными прогнозами после курса терапии почувствовала улучшение состояния. Моноклональные антитела для лечения рака имеют очевидные преимущества:

  1. Прикрепляясь к злокачественным клеткам, они не только делают их более заметными, но и ослабляют, нарушают их структуру. С ними человеческому организму бороться гораздо легче.
  2. Обнаружив свою цель, они способствуют блокировке рецепторов роста опухоли.
  3. Разработка антитела осуществляется в условиях лабораторий, где они намеренно соединяются с малым количеством радиоактивных частиц. Перенося эти частицы по организму, они доставляют их прямо к опухоли, где те и начинают действовать.

Принцип лечения

Действие моноклонов простое: они распознают определенные антигены и связываются с ними. Благодаря этому иммунная система быстро замечает проблему и вступает с ней в борьбу. Они помогают организму человека самостоятельно справиться с антигенами. Еще одно их огромное преимущество – воздействие исключительно на патологически измененные клетки, не нанося при этом вреда здоровым.

Препараты с моноклональными антителами

Хотя изобретены гибриды нормальных и опухолевых клеток такого типа были не очень давно, спектр препаратов, содержащих их в своем составе, уже выглядит внушительно. Новинки фармацевтики появляются регулярно. Такие препараты, как и большинство лекарственных средств, имеют различные побочные эффекты. Нередко после применения моноклональных веществ поступают жалобы на проявление аллергических реакций в виде зуда, сыпи. Изредка терапия сопровождается тошнотой, рвотой или кишечным расстройством. Далее об эффективных препаратах подробнее.

Стелара

Используется при терапии тяжелых форм бляшечного псориаза. Фармпрепарат состоит из моноклонов человека, что сводит риск возникновения побочных эффектов к минимуму. Форма выпуска – раствор для подкожного введения во флаконе или в шприце. Рекомендованная дозировка составляет 45 мг в сутки. Вторую инъекцию вводят через 4 недели после первой, далее уколы делают 1 раз в 12 недель. Терапевтический эффект от Стелара проявится уже через 15-20 дней. Поддерживающее лечение обеспечивает продолжительность ремиссии. После 2 инъекций кожа очищается на 75%.

Ремикейд

Представляет собой химерные антитела на основе моноклонов мыши и человека. Препарат снижает воспаление эпидермиса, регулирует деление кожных клеток. Форма выпуска – порошок лиофилизированный для приготовления парентерального раствора или во флаконах 20 мл. Состав для инфузий вводят внутривенно на протяжении 2-х часов со скоростью до 2 мл в минуту. Дозировка зависит от степени тяжести болезни. Повторные инъекции делают через 2 и 6 недель после первой. Для поддержки эффекта терапию повторяют каждые 1,5-2 месяца.

Хумира

Рекомбинантный моноклон с пептидной последовательностью, идентичной человеческой. Препарат эффективен при терапии сложных форм псориаза, тяжелом активном ревматоидном и псориатическом артрите. Применяется в виде подкожных инъекций в область живота или переднюю бедренную поверхность. Форма выпуска – раствор для подкожного введения. Уколы по 40 мг вводятся 1 раз в 2 недели.

Симпони

Составляющие фармпрепарата — моноклоны человека. Применяется при прогрессирующем псориатическом или ревматоидном артрите, анкилозирующем спондилите. Это средство помогает уменьшить симптомы при псориазе ногтей и кожи. Форма выпуска – раствор для подкожных инъекций (шприц или автоинжектор). Симпони требуется вводить подкожно один раз в месяц.

Моноклональные антитела

Моноклональные антитела — это новейшее достижение медицины, которое применяется при лечении тяжелых заболеваний. Среди них злокачественные новообразования, аутоиммунные, системные, заболевания сердечно-сосудистой системы, некоторые инфекции и многое другое. Помимо этого, моноклональные антитела широко используются в диагностике, например, в иммуногистохимии, иммуноферментном анализе, проточной цитофлуориметрии и др. Таким образом, данная технология используется во многих отраслях современной медицины.

Человечество уже давно открыло для себя действие антител — особых молекул, которые вырабатываются клетками иммунной системы для распознавания чужеродных агентов — антигенов и их уничтожения. Антитела обладают специфичностью. Это значит, что они узнают только свой антиген, причем не просто антиген, а отдельный его фрагмент — детерминантную группу. В одном антигене может быть несколько таких детерминантных групп, и к ним будут образовываться разные антитела. Более того, к одной детерминанте может образовываться сразу несколько видов антител, которые могут отличаться по структуре, степени родства и прочности связывания. Таким образом, при введении антигена в организм образуется большое количество разных видов антител, направленных исключительно на один вид антигена. Это позволяет обеспечить адекватную иммунную защиту.

Антитела образуются специальными антителообразующими клетками. Причем каждый их вид образуется отдельной группой генетически однородных клеток — клонов. Чем больше необходимо видов антител, тем больше образуется клонов. Соответственно, антитела, которые вырабатываются одним клоном клеток называются моноклональными антителами.

Раньше для производства антител применялась иммунизация животных, после которой отбиралась их плазма и использовалась для приготовления отдельных препаратов — иммунных сывороток для борьбы с различными токсинами (дифтерия, столбняк), вирусами, ядами и др. Но бывают ситуации, когда нужно конкретное антитело, направленное на конкретную детерминанту антигена. Здесь уже обычной иммунизацией не обойтись. Требуются более прицельные технологии.

Способы получения моноклональных антител

Получение моноклональных антител — это сложный многоступенчатый процесс, который проходит следующие этапы:

  1. Иммунизация животных. Обычно используются мыши или крысы. Это нужно для того чтобы увеличить количество лимфобластов — клеток, продуцирующих нужные антитела и перевести эти клетки в активное состояние. После выделения из организма эти клетки не могут долго существовать в лабораторных условиях, они погибнут даже на питательных средах с содержанием ростовых факторов. Чтобы это предотвратить, их скрещивают со злокачественными миеломными клетками.
  2. Подготовка миеломных клеток. Параллельно с иммунизацией животных проводят подготовку опухолевых миеломных клеток. Они, во-первых, обладают способностью синтезировать моноклональные антитела, а во-вторых, обладают неограниченным жизненным потенциалом (они бессмертны и способны к бесконечному воспроизведению). Для того чтобы миеломные клетки не погибли вне организма, их культивируют на специальных средах с использованием факторов роста.
  3. Гибридизация (слияние) лимфобластов и миеломных клеток для образования гибридомы. Для этого клетки обрабатывают различными антителами, чтобы изменить строение их мембран и спровоцировать образование цитоплазматических контактов. При этом образуются разные типы клеток, имеющих двойной набор хромосом (дикарионы). Это могут быть дикарионы, образованные только лимфоцитами, или только миеломными клетками. Но для производства моноклональных антител нужны именно дикарионы, образованные лимфоцитом и миеломной клеткой — гибридные клетки.
  4. Отбор гибридных клеток. Для этого используют специальные растворы, которые позволяют выжить только лимфобластным и гибридомным дикарионам. Первые в скором времени погибают, т. к. не обладают возможностью безграничного деления, а гибридомные клетки остаются жизнеспособными.
  5. Реклонирование гибридомных клонов.
  6. Определение и отбор гибридом, продуцирующих моноклональные антитела. Обычно для этого используется иммуноферментный анализ.
  7. Массовое наращивание антител.
  8. Очистка полученных антител. Степень очистки будет определяться областью применения препарата. Если это диагностика, достаточно 70-95% степени чистоты. Если препарат предполагается использовать для иммунотерапии, требуется более высокая степень чистоты. Для очистки используется аффинная и ионообменная хроматография.
  9. Удаление оставшихся примесей и обеззараживание полученного препарата от вирусов и бактерий.

В настоящее время идет тенденция отказа в использовании антител животных для лечебных целей. Во-первых, они являются чужеродными агентами для организма и могут спровоцировать аллергические реакции, вплоть до анафилаксии, что напрямую угрожает жизни пациентов. Во-вторых, иммунная система человека, распознавая такие антитела как чужеродные, будет пытаться их инактивировать, что снизит эффективность противоопухолевого лечения. Получить человеческие моноклональные антитела вышеописанным методом не представляется возможным, ввиду следующих проблем:

  • Иммунизация человека различными антигенами неэтична.
  • Даже если получить иммунизированные лимфоциты человека, будут проблемы на этапе их слияния с клетками миеломы мыши — полученные гибридомы будут нестабильны.
  • Клеточные линии миеломы человека, которые можно было бы эффективно использовать в рамках биотехнологий для получения антител, пока получить не удалось.

В этой связи необходимо было искать новые технологии получения антител. Решением проблемы стали гибридные, гуманизированные и одноцепочечные антитела, производство которых подразумевало применение гибридомной технологии, кратко описанной выше, и технологии рекомбинантной ДНК.

  • Гибридное или химерное антитело — это антитело, в котором его константный домен заменен на иммуноглобулин человека. Получаются они посредством технологии рекомбинантной ДНК, когда удаляется фрагмент мышиной ДНК, отвечающей за синтез константного домена и меняют его на фрагмент человеческой ДНК. Таким образом, в антителе в качестве константного домена, который обладает иммуногенными и эффекторными свойствами, будет человеческий белок, что позволит организму воспринимать его «за своего», а вариабельный домен, который специфически взаимодействует с антигеном, останется мышиным. Все вместе это позволит сохранить специфичность и уменьшить аллергенность и иммуногенность применяемого препарата.
  • Гуманизированное антитело содержит еще меньше мышиного белка за счет только антигенсвязывающих гипервариабельных участков вариабельного домена. Это еще больше снижает вероятность осложнений со стороны иммунной системы.
  • Одноцепочечное антитело представляет собой минимальный фрагмент антитела, который еще в состоянии хорошо связаться с антигеном и оказать свое действие. Он не содержит константного домена вообще.

Механизм действия моноклоналных антител

Моноклональные антитела широко используются в лечении заболеваний, у которых в патогенезе замешан иммунный компонент. С их помощью лечат псориаз, аутоиммунные заболевания, ревматоидный артрит, рассеянный склероз. Большие перспективы эти технологии получили и в онкологии в рамках таргетной терапии. При этом, их эффект основан на различных механизмах, которые рассмотрены ниже.

Читать еще:  Почему болят ноги

Изменение клеточных сигналов

В качестве примера изменения клеточных сигналов можно привести рецепторы факторов роста. Некоторые злокачественные клетки имеют на своей поверхности большое количество рецепторов к факторам роста, активирующим каскад реакций, направленный на усиление размножения клетки. Чем больше таких рецепторов, тем активнее протекает этот процесс. Если блокировать рецептор с помощью моноклонального антитела, он не сможет связаться с лигандом (фактором роста), и соответственно каскад этих реакций не будет запущен. Клетка не будет так активно размножаться и в конце концов погибнет.

Комплемент-зависимая цитотоксичность

Этот механизм реализуется следующим образом. Антитело связывается с антигеном, находящимся на поверхности злокачественной клетки, что приводит к активации многоэтапной системы комплемента (механизма иммунного ответа). Конечным этапом этих реакций является образование особого белка С 9, который перфорирует клеточную мембрану раковой клетки, что в конечном итоге приводит к ее гибели.

Усиление цитотоксического воздействия иммунных клеток

Моноклональные антитела могут стимулировать иммунные клетки, например, макрофаги. Они будут распознавать клетки злокачественных опухолей и «пожирать» их, тем самым уничтожая их.

Развитие адаптивного иммунитета

Одной из причин, по которой становится возможным образование и развитие злокачественной опухоли в организме, является то, что иммунная система человека не распознает такие клетки как чужеродные. Моноклональные антитела дают возможность иммунитету «познакомиться» с раком и делает его доступным для связывания и последующего уничтожения. Таким образом, организм получает возможность самостоятельно бороться с опухолью.

Препараты с моноклональными антителами

Препараты на основе моноклональных антител уже два десятилетия входят в протоколы противоопухолевого лечения некоторых злокачественных новообразований. В 2008 году ВОЗ были приняты рекомендации относительно непатентованных названий таких препаратов:

  1. Их название должно заканчиваться на маб, от английского monoclonal antibody.
  2. Для указания источника получения моноклонального антитела должны использоваться следующие подосновы:
    • -аксо — гибридное антитело.
    • -о — мышиное антитело.
    • -кси — химерное антитело.
    • -у — человеческое антитело.

В настоящее время используется два вида противоопухолевых моноклональных антител:

  • Неконъюгированные антитела — они оказывают непосредственное действие на процессы, которые приводят к гибели злокачественной клетки.
  • Конъюгированные антитела — они связаны (конъюгированы) с токсинами или изотопами. Токсины и изотопы обладают уничтожающим действием на злокачественные клетки, а антитело обеспечивает их прицельную доставку к клеткам-мишеням.

Применение неконъюгированных антител

Эти препараты используются чаще всего. Их целью является определенный рецептор на поверхности злокачественной клетки.

К этому типу препаратов относится ритуксимаб — первое моноклональное антитело, которое было одобрено для применения в клинической практике. Его используют для лечения CD20+ В-клеточных лимфом. Рецептор CD20 есть на В-лимфоцитах, как здоровых, так и опухолевых, но он отсутствует на других тканях и клетках, в том числе на стволовых. Поэтому при воздействии ритуксимаба хоть и погибает популяция В-лимфоцитов, но потом она восстанавливается за счет нетронутых стволовых клеток. Причем восстанавливаются именно здоровые клетки.

Неконъюгированные антитела могут помечать злокачественные клетки и делать их видимыми для иммунной системы. Таким способом работает алемтузумаб, который связывается с CD52+ лимфоцитами и привлекает к ним внимание иммунитета.

Также к неконъюгированным моноклональным антителам относятся ингибиторы рецепторов факторов роста. Факторы роста — это специальные молекулы, которые запускают деление клетки. Для того чтобы запустить этот процесс, фактор должен связаться со специальным рецептором, расположенным на мембране клетки, что приведет к каскаду соответствующих реакций. Такие рецепторы есть и у здоровых клеток, и у злокачественных, но у злокачественных их может быть очень много, что позволяет таким клеткам делиться быстрее. Блокирование рецепторов с помощью антител приводит к нарушению этого процесса деления и клетки уже не могут бесконтрольно размножаться. К таким препаратам относится трастузумаб, цетуксимаб и др.

К неконъюгированным антителам относятся и ингибиторы ангиогенеза — образования кровеносных сосудов. Ангиогенез очень важен для злокачественных опухолей, чтобы получать большее количество кислорода и питательных элементов, поэтому опухоли инциируют его образование с помощью специальных химических сигналов. Моноклональные антитела либо блокируют передачу этих сигналов, либо разрушают уже созданную внутри опухоли сосудистую сеть. Это приводит к нарушению ее питания и остановке роста. К группе этих препаратов относится рамуцирумаб, бевацизумаб и др.

Применение конъюгированных антител

Конъюгированные моноклональные антитела связывают с цитотоксическими или радиотоксическими веществами, что позволяет прицельно воздействовать разрушающим агентом на злокачественные клетки. В качестве примера такого препарата можно привести ибритумомаб (Зевалин), в котором моноклональное антитело против CD20 (как мы помним, это маркер В-лимфоцитов) соединено с радиоактивным изотопом — иттрием-90. Препарат применяется для лечения В-клеточных лимфом. В качестве другого препарата можно привести Кадсилу — препарат, в котором антитело трастузумаб конъюгировано с ингибитором микротрубочек DM1, оказывающим цитотоксический эффект. Применяют его для лечения рака молочной железы.

Проблемы при использовании моноклональных антител

Несмотря на, казалось бы, огромные перспективы в лечении онкологических больных, применение моноклональных антител не является панацеей и тоже имеет ряд проблем:

  • Препараты на основе моноклональных антител биологически и биохимически нестабильны. Особенно это касается конъюгированных антител. Это требует особых условий производства, хранения и транспортировки.
  • Антитела плохо проникают внутрь опухоли.
  • Они могут вызывать иммунный ответ против себя, что блокирует их действие. У 75% пациентов, которым вводились мышиные антитела, наблюдалось образование нейтрализующих антител, что снижало эффективность лечения.
  • Препараты на основе моноклональных антител оказывают токсическое действие. Конечно, оно не такое выраженное как у цитостатиков, но в ряде случаев токсичность настолько высокая, что требует отмены препарата.
  • Наиболее важным моментом является высокая специфичность моноклональных антител и высокая гетерогенность опухолевых клеток. Не все раковые клетки имеют молекулы мишени, на которые направлено действие препарата. Соответственно, они ускользают от его действия и остаются нетронутыми. Постепенно масса этих клеток накапливается и опухоль становится резистентной к данному методу лечения.

Чтобы улучшить результаты лечения, разрабатываются новые виды моноклональных антител. Одним из вариантов являются биспецифические антитела, которые направлены сразу на две молекулярные мишени, например, блинатумомаб — препарат, направленный сразу на две клеточные мишени В-лимфоцита — CD 19 и CD22. Он повышает узнаваемость злокачественных клеток даже после их трансформации в другие виды лейкоза.

В любом случае моноклональные антитела — это новое и высокоперспективное направление в современной онкологии. Разработка современных, более совершенных технологий помогает решать имеющиеся проблемы и делает лечение пациентов эффективнее и безопаснее.

63. Моноклональные антитела. Получение, применение.

Моноклональные антитела. Каждый В-лимфоцит и его потомки, образовавшиеся в ре­зультате пролиферации (т.е. клон), способны синтезировать антитела с паратопом строго определенной специфичности. Такие антитела получили название моноклональных. В природ­ных условиях макроорганизма получить моно­клональные антитела практически невозмож­но. Дело в том, что на одну и ту же антигенную детерминанту одновременно реагируют до 100 различных клонов В-лимфоцитов, незначи­тельно различающихся антигенной специфич­ностью рецепторов и, естественно, аффиннос­тью. Поэтому в результате иммунизации даже монодетерминантным антигеном мы всегда получаем поликлональные антитела.

Принципиально получение моноклональных антител выполнимо, если провести пред­варительную селекцию антителопродуцирующих клеток и их клонирование (т.е. выделение отдельных клонов в чистые культуры). Однако задача осложняется тем, что В-лимфоциты, как и другие эукариотические клетки, имеют ограниченную продолжительность жизни и число возможных митотических делений.

Проблема получения моноклональных ан­тител была успешно решена Д. Келлером и Ц. Милыптейном. Авторы получили гибридные клетки путем слияния иммун­ных В-лимфоцитов с миеломной (опухоле­вой) клеткой. Полученные гибриды обладали специфическими свойствами антителопродуцента и «бессмертием» раковотрансформированной клетки. Такой вид клеток полу­чил название гибридом. Гибридома хорошо размножается в искусственных питательных средах и в организме животных и в неогра­ниченном количестве вырабатывает антите­ла. В результате дальнейшей селекции были отобраны отдельные клоны гибридных кле­ток, обладавшие наивысшей продуктивнос­тью и наибольшей аффинностью специфи­ческих антител.

Гибридомы, продуцирующие моноклональные антитела, размножают или в аппаратах, приспособленных для выращивания культур клеток или же вводя их внутрибрюшинно особой линии (асцитным) мышам. В послед­нем случае моноклональные антитела накап­ливаются в асцитной жидкости, в которой размножаются гибридомы. Полученные как тем, так и другим способом моноклональные антитела подвергают очистке, стандартиза­ции и используют для создания на их основе диагностических препаратов.

Гибридомные моноклональные антитела нашли широкое применение при создании диагностических и лечебных иммунобиоло­гических препаратов.

64 Методы приготовления и применения агглютинирую­щих, адсорбированных сывороток.

В диагностике инфекционных болезней широко применя­ются иммунные реакции при идентификации возбудителя: при установлении родовой, видовой и типовой принадлежности микроба (вируса). Для постановки таких реакций необходимы специфические диагностические сыворотки, которые в зависи­мости от содержания соответствующих антител называются агглютинирующие, преципитирующие, гемо­литические, противовирусные.

Агглютинирующие сыворотки. Агглютинирующую сыворотку получают иммунизацией кроликов (внутривенно, подкожно или внутрибрюшинно) взвесью убитых бактерий, начиная с дозы 200 млн., затем 500 млн., 1 млрд., 2 млрд., микробных тел в 1 мл, с интервалами 5 дней. Через 7—8 дней после последней иммунизации берут кровь и определяют титр антител. Титром агглютинирующей сыворотки называется то макси­мальное разведение сыворотки, при котором происходит агглютинация с соответствую­щим микроорганизмом.

Агглютинирующие сыворотки применяются при идентифи­кации микроба в развернутой реакции агглютинации. Если изучаемый микроорганизм агглютинируется сывороткой до титра или до половины значения титра, его можно считать принадлежащим к тому виду, название которого указано на этикетке ампулы.

Неадсорбированные агглютинирующие сыворотки облада­ют высоким титром — до 1 : 12 800 — 1 : 25 600.

Недостатком таких сывороток является то, что они способ­ны давать групповые реакции агглютинации, так как они содержат антитела к бактериям, имеющим общие антигены в пределах семейства, группы и рода.

Поэтому в настоящее время большинство агглютинирую­щих сывороток выпускаются адсорбированными, монорецепторными и адсорбированными поливалентными, содер­жащими только типовые или видовые антитела и соответст­вующими или определенному типу или виду микроорганизма. Эти сыворотки не подлежат разведению.

Для получения таких сывороток применяют метод Кастелляни — метод адсорбции, который состоит в том, что при насыщении агглютинирующей сыворотки родственны­ми гетерогенными бактериями происходит адсорбция групповых антител, а специфические антитела остаются в сыворот­ке. В зависимости от полноты истощения групповых агглюти­нинов можно получить монорецепторные сыворотки — сыво­ротки, имеющие антитела только к одному рецептору-антигену или адсорбированные, поливалентные, дающие реакции агглю­тинации с двумя — тремя родственными бактериями, имею­щими общий антиген, в отношении которого проводилась ад­сорбция.

Адсорбированные сыворотки применяют при идентифика­ции выделенных возбудителей в реакции агглютинации на стекле (пластинчатый метод).

Агглютинирующие сыворотки наиболее широко применя­ются при диагностике заболеваний, вызываемых бактериями семейства Enterobacteriaceae. Так, при идентификации эшерихий используются поливалентные и типовые ОК-сыворотки; при дифференциации сальмонелл — набор сывороток: агглю­тинирующая адсорбированная поливалентная сальмонеллезная О-сыворотка (групп А, В, С, Д, Е) — для определения принадлежности к роду Salmonella, при положительном ре­зультате — определяют отдельно с каждой сывороткой (входя­щей в смесь) серологическую группу и в заключение опреде­ляется серологический тип выделенного возбудителя с моно-рецепторными Н-сыворотками сальмонелл, входящих в данную группу.

Моноклональные антитела.

Моноклональные антитела (МАТ) секретируются иммунными клетками, происходящими от единственной антителообразующей клетки. Поэтому МАТ направлены только против определенного эпитопа иммуногенного вещества, так называемой «антигенной детерминанты». Для получения МАТ изолируют лимфоциты из селезенки иммунизированной мыши и производят их слияние с опухолевыми клетками мыши (клетками миеломы). Это необходимо, так как жизнеспособность антителопродуцирующих лимфоцитов в культуре ограничена лишь несколькими неделями. При слиянии с опухолевой клеткой возникают гибридные клетки, так называемые гибридомы, которые являются потенциально бессмертными.

Слияние клеток является редким событием, частота которого повышается в присутствии полиэтиленгликоля [ПЭГ (PEG)]. Отбор продуктивных гибридных клеток проводится при длительной инкубации первичной культуры в ГАТ-среде (НАТ-среде), содержащей гипоксантин, аминоптерин и тимидин. Аминоптерин, аналог дигидрофолиевой кислоты, конкурентно ингибирует дигидрофолат-редуктазу и тем самым биосинтез дТМФ. Поскольку дТМФ существенно необходим для синтеза ДНК, миеломные клетки не могут выживать в присутствии аминоптерина. С другой стороны, клетки селезенки могут преодолевать действие ингибитора, используя для синтеза ДНК гипоксантин и тимидин, однако и они существуют в течение ограниченного времени. Только гибридома выживает в виде культуры в среде ГАТ, так как эти клетки обладают одновременно бессмертием миеломных клеток и способностью клеток селезенки приспосабливаться к аминоптерину.

В действительности продуцировать антитела способны только единичные гибридомные клетки. Такие клетки необходимо выделить и размножить клонированием. После тестирования клонов на способность образовывать антитела отбираются положительные культуры, которые снова клонируются и подвергаются последующей селекции. В результате получают гибридому, продуцирующую моноклональные антитела. Производство моноклональных антител этими клетками осуществляют in vitro в биореакторе или in vivo в асцитной жидкости мыши.

Получение моноклональных антител.

Как образуются антитела? Иммунный ответ — сложный процесс межклеточных взаимодействий различных типов лимфоидных клеток с участием специальных гормонов, в результате чего В-лимфоциты начинают активно синтезировать и выделять в кровь специфические антитела против данного антигена. На поверхности В-лимфоцитов существуют рецепторы, аналогичные антителам, взаимодействие которых с антигеном в сложном межклеточном комплексе служит стимулом для начала биосинтеза антител.

Получение антител для нужд человека начинается с иммунизации животных. После нескольких инъекций антигена в присутствии стимуляторов иммунного ответа в сыворотке крови накапливаются специфические антитела. Антитела выделяют из сыворотки в виде g-глобулиновой фракции, осаждая сыворотку крови сульфатом аммония, спиртом, ПЭГ и другими веществами. Полученные антитела содержат много примесных белков. Высокоочищенные антитела выделяют с помощью ионообменной хроматографии.

Стандартные препараты получить довольно сложно, так как состав их зависит от вида животного, его индивидуальных особенностей, цикла иммунизации, других малоконтролируемых факторов. В то же время, для современного биохимического анализа очень важна специфичность, то есть способность выделить данное вещество в сложных многокомпонентных средах, таких, как сыворотки крови, сок растений, ферментная среда. Такое возможно при использовании иммунохимического метода, использующего антитела, взаимодействующие узко специфично по принципу «антиген — антитело». Для проведения такого анализа необходимы абсолютно идентичные антитела, синтез которых обычными способами не приемлим.

Читать еще:  Опух локтевой сустав в чем может быть причина

Решение проблемы было предложено в 1975 году английскими учеными Георгом Кёлером и Цезарем Мильштейном. Они разработали методику получения клеточных гибридов — гибридом. Гибридомы образуются в результате слияния лимфоцитов, взятых от иммунизированных животных, с клетками миеломы костного мозга, культивируемыми in vitro.

Животное иммунизируют, в ответ на введение антигена в организме мыши активизируются продуцирующие антитела В-лимфоциты. Эти клетки могут жить только в организме хозяина, при переводе на искусственную питательную среду они гибнут. Если слить иммунную клетку с опухолевой, образуются гибридные клетки, способные неограниченно долго жить в искусственных средах. Одновременно они сохраняют способность синтезировать антитела.

Гибридомы, синтезирующие определенные виды антител, отбирают на селективных ростовых средах. Затем их помещают в культуральную жидкость, в которой они размножаются и образуют много родственных клеток (клон). Такие клоны могут синтезировать антитела, получившие название моноклональных (МКА). МКА — антитела, однородные по структуре и специфичности, которые можно производить в неограниченных количествах.

Другой метод получения антител основан на инъекции полученной гибридомы в брюшную полость мышки. Там гибридома реплицируется и вызывает образование асцитной опухоли (скопления клеток, плавающих в жидкости, заполняющей брюшную полость). Асцитная жидкость, выделенная из этой мыши, представляет суспензию, содержащую антитела. Клетки и белки, не относящиеся к МКА, удаляются. Оставшийся материал, представленный преимущественно антителами, используют. Этот метод позволяет получать высококонцентрированные препараты антител. Но массовое производство требует одновременного использования нескольких тысяч мышей. Кроме того, получаемый материал требует доочистки. Это дорого и трудоемко, поэтому в настоящее время предпочтение отдается первому способу, с использованием культуры клеток.

Высокая специфичность антител в отношении антигена превращает их в мощный инструмент для идентификации различных веществ, будь то макромолекулы, клеточные фрагменты или целые клетки.

Другой путь заключается в том, что получают антитела одного и того же вида животного (например, кролика) против определяемого антигена и фермента, которые соединяют между собой через антитела другого вида животных (антитела барана против кролика). Добавление фермента к такой тройной молекуле также приводит к образованию комплекса антитело—фермент. В настоящее время разрабатываются подходы получения гибридных антител методами клеточной и генной инженерии, что позволит существенно упростить способ их получения.

Стабильность иммуноферментных конъюгатов при хранении — важнейший параметр, обусловливающий возможность их практического использования. Методы направленной стабилизации конъюгатов пока еще не разработаны. Не существует также корреляции между стабильностью конъюгатов и методом их получения. Однако высокая стабильность гибридных молекул обеспечивает их применение на практике и значительно превосходит стабильность антител и антигенов, меченных радиоактивными изотопами. В лиофилизованном состоянии ферментные конъюгаты сохраняют свои свойства до двух лет.

Моноклональные антитела нашли широкое применение в вирусологической практике и экспериментальной вирусологии. С их помощью стало возможным повысить чувствительность и воспроизводимость диагностических тестов. В то же время требуется известная осмотрительность при использовании моноклональных антител для обнаружения и идентификации вирусов: из-за своей высокой специфичности эти антитела могут не распознать тот или иной природный изолят вируса, если в результате мутации строение эпитопа, ответственного за связь с данным антителом, изменилось. Особую ценность представляет способность моноклональных антител дифференцировать антигенные варианты вируса внутри одного серотипа, например, “дикие” и вакцинные полиовирусы. В генной инженерии моноклональные антитела успешно используются для выявления протективных эпитопов в составе рекомбинантных иммуногенов. Моноклональные антитела, фиксированные на водонерастворимом полимере, служат хорошим средством хроматографической очистки и выделения из смеси как вирусных антигенов, в том числе и поверхностного антигена вируса гепатита В, так и разнообразных биологически активных веществ, например, интерферонов. В той или иной степени Моноклональные антитела применялись в работах с вирусами гепатитов А, В, С и D.

Полностью процедура получения моноклональных антител включает в себя следующие этапы:

• иммунизация животных; подготовка клеток к слиянию;

• отбор индуцирующих специфические антитела клонов;

• клонирование и реклонирование;

• массовая наработка гибридомных клеток;

• получение культуральной жидкости или асцита, содержащих антитела;

Обычно вся процедура от момента начала иммунизации до выделения антител занимает 3-4 месяца. Для работы по получению гибридом желательно выделить отдельное помещение. Эксперимент можно проводить и в части большой комнаты, максимально удаленной от входной двери. Это помещение надо оснастить следующим оборудованием:

1. Ламинарный бокс с вертикальной или горизонтальной подачей стерильного воздуха. Стерильность обеспечивается наличием фильтров, задерживающих частицы крупнее 0,3 мкм.

2. Инкубатор, в котором автоматически поддерживается влажность, температура и концентрация СО2.

3. Низкоскоростная центрифуга с подвесными стаканами, желательно с охлаждением.

4. Обычный и инвертированный микроскопы с фазово-констрастным устройством.

5. Холодильник на +4 и на 200 С. 6. Водяная баня на +37 и +560 С.

Помимо этого в отдельном помещении желательно иметь морозильник на 700 С и сосуд Дьюара с жидким азотом для хранения клеток. Для получения гибридом нужно приобрести также специальную пластиковую посуду для культуры клеток: 96-луночные планшеты с плоским дном, 24-луночные планшеты, флаконы с площадью роста 25, 75 см2 и др., пластиковую посуду для проведения иммуноферментного и радиоиммунологического анализов, среды для культивирования, необходимые реактивы, сыворотку плода коровы (СПК). Приготовление отдельных компонентов сред для культивирования. Основными средами, употребляемыми для получения гибридом, являются среда RPMI 1640 и среда Игла в модификации Дульбекко. Применяются и другие среды, в частности, среда Дульбекко в модификации Иксова. Среды выпускаются в виде готовых растворов, 10-кратных концентратов и сухих порошков. Лучшие результаты получаются при приготовлении сред в условиях лаборатории из сухих порошков, однако при этом важное значение имеет качество воды. Для приготовления сред необходима деионизированная и дважды перегнанная в кварцевой посуде вода. Выбор экспериментального животного. Обычно для иммунизации используют мышей и крыс. Это связано с тем, что подходящие миеломные клетки мышей и крыс широко распространены и, кроме этого, не представляет сложностей выращивание полученных гибридом в организме этих животных. Другие животных практически не используются. При иммунизации животных иммунный ответ вырабатывается на все антигенные детерминанты всех компонентов вводимого материала. Это значительно осложняет отбор клонов, продуцирующих антитела к интересующей антигенной детерминанте, так как их доля может быть крайне незначительной. Поэтому по возможности для иммунизации применяют очищенные антигены, по крайней мере на последних этапах иммунизации. Одним из основных достоинств гибридомной техники и является как раз то обстоятельство, что специфические антитела против данного антигена можно получить, взяв для иммунизации неочищенный препарат антигена, и употребив впоследствии эти антитела для очистки антигена. Способы иммунизации. Назначение процесса иммунизации состоит в том, чтобы увеличить долю клеток, продуцирующих антитела заданной специфичности, и перевести эти клетки в функциональное состояние, при котором они способны сливаться и образовывать антителообразующие гибридные клетки. Экспериментально установлено, что для гибридизации необходимы выделять селезеночные клетки животных через 3-4 суток после последнего введения антигена, то есть тогда, когда в лимфоидных органах много активно пролиферирующих клеток. Конкретная схема иммунизации сильно зависит от природы антигена и его иммуногенности. Антигены клеточной поверхности являются сильными иммуногенами, тогда как большинство растворимых белков слабые иммуногены. В последнем случае необходимо применять различные адъюванты, усиливающие иммунный ответ. Среди адъювантов наибольшее распространение получил полный адъювант Фрейнда (ПАФ). Помимо этого, используют введение антигена, преципитированного на квасцах, и введение вместе с антигеном убитых клеток Bordetella Pertussis. Обычно антиген вводят неоднократно, что необходимо для развития сильного иммунного ответа, хотя чрезмерная иммунизация может иметь обратный эффект отмечено, что иногда у клеток гипериммунизированных животных снижается способность образовывать гибридомы. В некоторых случаях бывает достаточно и одной иммунизации. По ходу иммунизации необходимо определять титр антител к антигену (титр антител величина, обратная разведению сыворотки, при которой степень иммунологической реакции снижается в два раза по сравнению с максимальной). Обычно это делают перед последней иммунизацией. В опыт набирают животных с высоким титром антител. Не следует ожидать хороших результатов гибридизации, если при иммунизации животных нет образования антител или они образуются в низком титре. Для большинства растворимых антигенов можно использовать следующую схему иммунизации:

1. Вводят 1-100 мкг антигена в ПАФ или в виде преципитата на квасцах внутрибрюшинно. Если есть возможность, то одновременно вводят 2*109 убитых клеток B. Pertussis.

2. Через 2-3 недели вводят антиген на физиологическом растворе внутрибрюшинно или внутривенно. Эту процедуру можно повторять до появления высокого титра антител.

3. Последнюю иммунизацию делают внутривенно, через 3 суток животные забиваются, и готовится суспензия клеток для гибридизации.

При применении в качестве иммуногена различных клеток (опухолевые клетки,чужеродные клетки крови, бактерии, паразиты и т.д.) делают несколько инъекций без адъюванта внутрибрюшинно с интервалом в 2-3 недели по (1-5)*107 клеток. Последнюю инъекцию делают внутривенно и через 3 дня выделяют клетки селезенки для гибридизации. В последнее время активно развиваются методы полной иммунизации вне организма с целью получения гибридомы.

Иммунизация in vitro имеет ряд существенных преимуществ:

a) укорачивается период иммунизации до 4-5 суток;

б) требуется существенно меньшее количество антигена;

в) ко многим антигенам можно получить более выраженный иммунный ответ (частично за счет снижения вклада толерантности и супрессии);

г) повышается процент отвечающих клеток;

д) легко проверять факторы, влияющие на эффективность иммунизации.

Современные методы иммунизации in vitro основаны на двух системах культивирования лимфоцитов, разработанных в конце 1960-х годов. Метод суспензионного культивирования был первым методом, в котором иммунизация полностью проходила вне организма. Критическими факторами в данном методе были низкая концентрация кислорода в атмосфере (7%), высокая плотность клеток, легкое покачивание культуры, ежедневное добавление свежей среды и выбор подходящей партии СПК и антигена (использовали эритроциты барана). Другой основной системой иммунизации in vitro является метод Д. Марбрука. Клетки культивируют в маленькой камере на диализной мембране, через которую идет обмен средой из большого резервуара. Одним из основных недостатков иммунизации in vitro является доля IgM-образующих клонов. Это связано с тем, что при иммунизации in vivo клетки берут во время вторичного иммунного ответа, при котором образуются в основном антитела IgG класса, тогда как in vitro реакция идет по первичному типу, для которого характерна продукция IgM антител. Эта проблема может быть преодолена после отработки способов получения вторичного иммунного ответа in vitro.

Гибридомная технология получения моноклональных антител

При введении антигена в организм возникает большое семейство антител, направленных к разным его детерминантам и различающихся даже внутри группы антител, направленных к одной и той же детерминанте. Однако иногда требуется определённый вид антител, специфичных лишь к одной детерминанте антигена и имеющих одни и те же характеристики.

Моноклональные антитела – это антитела строго определённой специфичности, продукт одного клона. Моноклональные антитела гомогенны как по специфичности, так и по физико-химическим свойствам. В природе почти никогда не наблюдается истинный моноклональный ответ.

Получение моноклональных антител стало возможным благодаря работам Георга Келера и Цезаря Мильштейна, которые в 1984 г. стали лауретами Нобелевской премии. Они применили оригинальный подход, получив гибрид нормальной антителообразующей клетки (АОК) и опухолевой клетки (гибридому). Гибридома наследовала от нормальной клетки способность к синтезу антител, а от опухолевой клетки – способность к неограниченному числу делений (бессмертие).

Для получения гибридом наиболее подходящими оказались клетки плазмоциты, опухоли, происходящей из плазматических клеток. Эти клетки по своей дифференцировке наиболее соответствовали антителообразующим клеткам, так как сохраняли способность к синтезу иммуноглобулинов. С использованием специальных приемов были получены мутантные плазмоцитомные клетки, не способныесинтезировать нуклеиновые кислоты по резервному пути из гипоксантина и тимидина.

Для получения АОК животных (мышей или крыс) активно иммунизировали определенным антигеном. Когда продукция антител достигала высокого уровня, из селезенки и лимфоузлов животных (мест скопления АОК) готовили суспензию клеток.

Затем вызывали слияние АОК с клетками плазмоцитомы, применяя для этой цели полиэтиленгликоль (ПЭГ) – полиэлектролит, способствующий слиянию клеточных мембран. Гибридома сохраняла способность к клеточному делению, в процессе которого хромосомы обоих ядер перемешивались и образовывали одно общее ядро, содержащее гены иммуноглобулинов обеих клеток – предшественников.

Для того чтобы отделить заданную гибридому от присутствующих в системе отдельных неслившихся клеток и от гибридов иного состава или иной специфичности, чем требуемые, авторы разработали специальную схему, использующую отбор клеток в селектирующей ГАТ-среде, содержащей гипоксантин, аминоптерин и тимидин. Аминоптерин является высокотоксичным агентом, блокирующим синтез пуриновых оснований, необходимых для дальнейшего синтеза нуклеиновых кислот. Это приводит к гибели опухолевых клеток, имеющих метаболический дефект, не позволяющий использовать резервный путь синтеза пуриновых оснований. АОК способны расти в ГАТ-среде, но будучи смертными погибают естественным путем через 1 – 2 недели. Гибридомы же сохраняют жизнеспособность, поскольку сочетают свойства «бессмертной» опухолевой клетки и АОК, использующих обходной метаболический путь синтеза пуринов.

Читать еще:  Подлопаточный бурсит суставы

Выжившие в ГАТ-среде гибридомные клетки рассеивают в пластиковые планшеты на 96 лунок ёмкостью 0,2 см 3 (в каждую по 10 гибридом), через несколько дней содержимое лунок проверяют на наличие антител нужной специфичности (т. е. моноклональных). Клетки из лунок, содержащих таковые, клонировали, рассеивая по 1 клетке в лунку. Эта клетка-предшественник дает начало формированию «бессмертного» клона, продуцирующего моноклональные антитела. Процедура повторяется до 2 раз.

Полученные клоны гибридомных клеток можно хранить длительное время при -70 о С, как угодно долго культивировать на питательных средах, накапливая антитела, перевивать от одного подопытного животного другому. Секретируемые этими клетками антитела не содержат посторонних антител, физико-химически однородны и могут рассматриваться как чистые химические реактивы.

Следует отметить альтруизм создателей гибридомной технологии. В интересах развития науки Г. Келер и Ц. Мильштейн отказались от патентования своего метода, более того предоставили клеточную линию плазмоцитомы для исследования во все ведущие исследовательские лаборатории в мире.

В настоящее время гибридомная технология лежит в основе получения абзимов, о чем говорилось выше. Моноклональные антитела в силу своей высочайшей специфичности, стандартности и технологичности широко применяются как диагностикумы для определения широкого спектра биологически активных веществ: белков, гормонов, медиаторов воспаления, бактериальных и вирусных антигенов, различных ядов.

Создание гибридом и получение моноклональных антител.

Информация о услуге по созданию гибридом и получению моноклональных антител:

• Создание 3 стабильных гибридом, продуцирующих моноклональные антитела, занимает 3-4 месяца.

• Стоимость создания 3 гибридом — 5000 долларов США в рублях по курсу Центрального банка Российской Федерации на день платежа.

• Получение асцитной жидкости от 5 мышей – 16000 рублей.

• Грубая очистка антител из астицной жидкости — 5000 рублей.

• Для иммунизации необходим антиген, который Заказчик может заказать в нашей компании со скидкой 40% или предоставить сам.

Всю интересующую Вас информацию Вы можете узнать по e-mail: atg@service-gene.ru

Информация по созданию гибридом и получению моноклональных антител.

Технология получения гибридом – клеток, продуцирующих моноклональные антитела, впервые была описана в 1975 году Келером и Мильштейном. Гибридные клетки получали путем слияния мутантных клеток плазмацитом и спленоцитов мышей, иммунизированных эритроцитами барана. В качестве индуктора слияния клеток использовали вирус Сендай. Гибридные клетки культивировали в полужидком агаре, содержащим метаболические ингибиторы опухолевых клеток. Таким образом, клетки, получившие ген, кодирующий недостающий фермент, активно пролиферировали, наряду с лимфоцитами из селезёнки. Однако, последние погибали в силу ограниченности срока их деления.

С развитием гибридомной технологии методика претерпела существенных изменений. В качестве индуктора слияния клеток в современных работах используется полиэтиленгликоль. На смену полужидкому агару пришла техника лимитирующих разведений. Еще одним направлением развития данной технологии стало создание и оптимизация клеточных линий плазмацитом. Большинство культивируемых клеточных линий плазмацитом были созданы в рамках исследований Национального института здоровья в США, посвященных изучению структур и функций иммуноглобулинов. Интересно, что практически все используемые для создания гибридом, продуцирующих моноклональные антитела, клеточные линии, были получены из штамма плазмацитомы MOPC21, индуцированных у мышей линии Balb/C. Название происходит от способа индукции плазмацитомы – MOPC – mineral-oil- induced plazmacytoma. Однако, для использования этих клеточных линий необходимо было преодолеть ряд препятствий. Так, плазмацитомы, будучи клетками с высоким уровнем дифференцировки, обладают слабой способностью к росту вне организма. Поддержания культуры клеток стало возможным при использовании различных ростовых факторов, источником которых могут быть перитонеальные макрофаги, спленоциты или сыворотка крови мышей, иммунизированных полным адъювантом Фрейнда. Культивируемую линию выводили чередованием культивирования in vitro и пассированием в сингенных мышах. В результате многочисленных попыток была получена клеточная линия P3K. Дальнейшая работа по выведению гибридомных клеточных линий была связана с разработкой оптимальной методики метаболической селекции. В основе метода лежит возможность использования нормальными соматическими клетками двух путей синтеза нуклеотидов. Для селективного отбора сначала блокируют с помощью метаболических ядов основный тип синтеза, где предшественниками нуклеотидов являются аминокислоты и углеводы. Если же клетки дефицитны по ферментам второго (запасного) пути синтеза нуклеотидов, то она гибнет. От гибели клетку может спасти гибридизация с клеткой, содержащей дефицитный ген. Этот принцип лег в основу метода получения гибридомных клеточных линий.

Существенным этапом в становлении гибридомной технологии стало создание штаммов плазмацитом, лишенных способности продуцировать иммуноглобулины и их фрагменты. Для этого плазмацитомы обрабатывали сыворотками к мышиным иммуноглобулинам, отбирали и клонировали клетки, не продуцирующие Ig.

На данный момент выведено множество линий клеток плазмацитом: X63Ag8.653, NSO, SP-2/O-Ag14. Все они различаются по способности производить после слияния стабильные клоны, продуцирующие значительные количества моноклональных антител. Гибридомы X63, NSO, получаемые из исходных миеломных клеток — стабильнее чем те, что являются гибридными производными. Однако, все эти линии имеют существенный общий недостаток – острая необходимость в присутствии экзогенных ростовых факторов. Чаще всего применяют коровьи эмбриональные сыворотки. Реже используют сыворотки других животных, в частности сыворотку пуповинной крови человека. Работа с сыворотками вносит и негативный вклад в методику, так как создаёт необходимость тщательного контроля контаминации микоплазмами, которые конкурируют с клетками за предшественников нуклеотидных оснований.

Важным этапом создания гибридом является эффективная иммунизация животных. На титр антител может влиять как природа антигена, так и генотип животного. Успех иммунизации определяется рядом факторов: свойствами иммуногена, сочетанием с адъювантами или носителями. Так, полный адъювант Фрейнда применяют для получения иммунного ответа на целый спектр антигенов и коиньецируемых примесей. Однако, его применение имеет ряд побочных эффектов, в частности – болезненные очаги воспаления, чего не наблюдается при иммунизации с неполным адъювантом Фрейнда. Если же целью является получение иммуноглобулинов класса E, то в качестве адъювантов используют алюмокалиевые квасцы. Для получения высокого титра антител необходимо оптимизировать также схему иммунизации. Известными фактом является то, что с увеличением длительности стимуляции антигеном увеличивается аффинность, получаемых моноклональных антител, но снижается олигоклональность иммунного ответа (происходит ответ только на доминантные эпитопы). Следует помнить, что частые повторные введения антигена ведут к снижению ответа до фонового уровня. Однако, имеет смысл увеличить концентрацию антигена у животных непосредственно перед взятием у них лимфоидных клеток. Еще одним способом увеличить выход моноклональных антител является использование механизма адаптивного переноса спленоцитов от иммунизированных мышей облученным реципиентам. Таким же образом пытались изменить спектр специфичности антител.

Эффективная иммунизация помимо всего вышеперечисленного опосредована генотипом иммунизируемых животных. Общепринятым ныне является подход с использованием генетически инбредных линий мышей Balb/C, как для иммунизации, так и для получения культивируемых линий плазмацитом. Очевидным плюсом его является разрешение проблемы гистосовместимости, минусом – сужение спектров эпитопов, распознаваемых получаемыми моноклональными антителами.

Приняв во внимание все ключевые моменты эффективной иммунизации и получив необходимый титр антител, переходят к этапу получения спленоцитов и их слиянию. В качестве источника лимфоцитов обычно используют селезенку, реже лимфоузлы или костный мозг.

Перед слиянием клеток их обогащают плазмобластами. Для этого существует несколько различных подходов. Наиболее простой заключается в повторном введении антигена в течение нескольких дней предшествующих получению клеток. Другой подход состоит в использовании различных манипуляций с лимфоидными клетками in-vitro с целью обогащения суспензии плазмобластами. К примеру, предварительное выделение клеток с плавучестью 1,06-1,07 на градиенте Percoll существенно увеличивало выход гибридом, продуцирующих моноклональные антитела. Сегодня для выделения специфических лимфобластов используют клеточный сортер. Для повышения выхода гибридом используют миеломные клетки, нагруженные специфическим антигеном, что приводит к образованию контактов между опухолевыми клетками и антиген-специфичными плазмобластами.

Подготовка плазмацитомы к слиянию заключается в выбраковке ревертантов из гомогенной синхронизированной культуры в логарифмической фазе роста; проверка её соответствия основным параметрам; рассеивание её с максимальной частой и поддержание её постоянной пролиферации.

Гибридизацию лимфобластов и плазмацитомы проводят путем клеточного слияния, опосредованного различными агентами, приводящими к изменению мембран, формированию цитоплазматических контактов и формированию дикарионов. Для индукции гибридизации используют несколько различных подходов. Первым изученным и вошедшим в практику было использование вируса Sendai, посредством вовлечения клеточных рецепторов, липидных компонентов мембран, гликопротеидов вируса. Этот подход имел ряд недостатков, связанных с воспроизводимостью результатов и жизнеспособностью гибридов. Альтернативным агентом является ПЭГ. Механизм слияния, индуцированного ПЭГ до конца не раскрыт. Для слияния используют ПЭГ с ММ 1000-4000 и концентрацией 30-55%. Сегодня появился более современный способ индуцировать слияние клеток – подвергнуть их воздействию электрических импульсов. В результате слияния получают несколько типов дикарионов. Для отбора интересующего дикариона (лимфобласт-миелома) используют ростовые среды, содержащие, помимо аминоптерина, гипокстантин и тимидин, которые опосредуют альтернативный путь синтеза ДНК. Таким образом, в ходе селекции выживают дикарионы, возникшие в результате слияния а) двух лимфобластов и б) лимфобласта и плазмацитомы. Первые быстро погибают ввиду ограниченности пролиферативного потенциала. Остаются целевые гибридные клетки. Данная схема имеет множество модификаций в отношении культивирования. Для культивирования можно использовать мягкий агар с уже включенными селектирующими агентами, либо жидкую селективную среду в 96 луночном планшете, либо же культивирование клеток проводят в условиях массовой среды, с их последующим переносом в селективную среду в 96-луночном планшете.

Помимо селективных агентов в питательные среды добавляют ростовые факторы, так как клетки мышиных плазмацитом и полученные из них гибриды нуждаются в присутствии ростовых факторов, в частности IL6. Для этого в среду помимо сыворотки добавляют кондиционированные среды — надосадочные жидкости, полученные при культивировании первичных клеточных культур, чаще перитонеальных макрофагов.

Еще одна стратегия по увеличению выхода гибридом, заключается в совместном рассевании гибридных клеток с другими клетками, к примеру, тимоцитами мышей, облученными ксеногенными или аллогенными фибробластами. Предполагается, что помимо создаваемого эффекта клеточной массы благоприятное влияние могут оказывать продуцируемые такими клетками различные цитокины. Если же в качестве таких клеток использовать перитонеальные макрофаги, то они будут выполнять крайне важную функцию расчистки культур от погибающих клеток.

Итак, дальнейшим этапом является скрининг гибридов-продуцентов моноклональных антител. Наиболее распространенными методами тестирования продуктов секреции гибридомных клеток являются методы иммуноанализа на основе ферментных и флуоресцентный меток. Тестирование моноклональных антител против клеточно-ассоциированных антигенов проводят непрямой иммунофлуоресценцией на живых или фиксированных клетках. Поиск моноклональных антител, направленных против антигенов клеточной поверхности, проводят микроцитотоксическим тестом. Выявление культур, синтезирующих специфические иммуноглобулины, является лишь первым этапом отбора растущих гибридов. Расширенный скрининг заключается в проведении как позитивного, так и негативного отбора, с целью выявить наличие специфических взаимодействий моноклональных антител с другими антигенами.

Так как все гибридомные клетки анеуплоидны, им присуща генетическая нестабильность и тенденция к выщеплению вариантов, утративших способность синтезировать иммуноглобулины. Основная потеря хромосом гибридомами происходит в течение первого месяца после слияния, затем в процессе длительного культивирования отмечается постепенная сегрегация хромосом. Клонирование является основным методом получения стабильных гибридомных штаммов. Этот процесс облегчает использование клеточного сортера. Однако, в практике довольно широко применяется более дешевые методы, такие как – клонирование в жидкой среде методом лимитирующих разведений. Процедура состоит в рассеве клеток с убывающей концентрацией.

Полученные генетически стабильные штаммы гибридом используют для выделения целевого продукта в необходимых количествах. Существуют два пути наработки моноклональных антител в больших количествах. Первый заключается в массовом культивировании in vitro. Метод имеет ряд недостатков, связанных с необходимостью выщепления сыворотки из компонентов среды. Решением этой проблемы стало внедрение бессывороточных сред, содержащих различные компенсирующие компоненты (инсулин, трансферрин). Для массового культивирования гибридом в ферментерах необходима длительная адаптация гибридомных штаммов, некоторые штаммы не удается адаптировать и их продолжают выращивать методом пассирования на животных.

Альтернативный путь наработки моноклональных антител применяется только в странах, в которых не приняты правила гуманного обращения с животными, в частности в России. Метод основывается на опухолевой природе гибридом и их способности расти в сингенных животных. Для получения больших объемов жидкости, содержащей моноклональные антитела, гибридомы вводят внутрибрюшинно мышам реципиентам. В результате в брюшной полости вырастает солидная опухоль и возможно накопление асцитической жидкости, являющейся источником моноклональных антител. Увеличить количество асцита, содержащего моноклональные антитела, можно путем внутрибрюшинного введения нетоксического масла за несколько дней до инокуляции гибридом. Однако, в организме мыши-реципиента развитию гибридомной опухоли противодействует ряд факторов. Во-первых, естественная резистентность организма, опосредованная NK клетками, активирующимися в ответ на различия в экспрессии молекул гистосовместимости. Во-вторых, активация Т лимфоцитов в ответ на опухолевые антигены. В-третьих, синтез антиидиотипических антител. Возможна еще активация антивирусного иммунного ответа, при наличии вируса в гибридомных клетках. Первостепенной задачей исследователей было разрешение проблемы сингенности клеток опухоли и организма реципиента. Одним из таких решений было использование бестимусных мышей.

Из двух перечисленных методов наработки моноклональных антител второй является наиболее продуктивным: выход моноклональных антител 1-25 мг/мл при культивировании in vitro и 20-100 мкг/мл при массировании гибридом на животных.

Таким образом, мы видим, что процесс создания моноклональных антител является трудоемким процессом. Однако, преимущества их использования во много раз окупают затраты. Моноклональные антитела стандартны в своих свойствах и могут быть получены в неограниченных количествах; обладают абсолютной специфичностью к одному эпитопу целевого антигена; изменение конфигурации эпитопа коррелирует со снижением сродства моноклональных антител к эпитопу; возможно создание моноклональных антител против ранее неизвестных антигенов.

Ссылка на основную публикацию
Adblock
detector